
Identifying characteristic scales in the human genome

P. Carpena,1 P. Bernaola-Galván,1 A. V. Coronado,1 M. Hackenberg,2 and J. L. Oliver2

1Departamento de Física Aplicada II, Universidad de Málaga, 29071 Málaga, Spain
2Departamento de Genética, Universidad de Granada, 18071 Granada, Spain

�Received 1 June 2006; published 16 March 2007�

The scale-free, long-range correlations detected in DNA sequences contrast with characteristic lengths of
genomic elements, being particularly incompatible with the isochores �long, homogeneous DNA segments�. By
computing the local behavior of the scaling exponent � of detrended fluctuation analysis �DFA�, we discrimi-
nate between sequences with and without true scaling, and we find that no single scaling exists in the human
genome. Instead, human chromosomes show a common compositional structure with two characteristic scales,
the large one corresponding to the isochores and the other to small and medium scale genomic elements.
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The long-range, power-law fractal correlations detected in
human DNA sequences �1� imply that compositional seg-
ments should appear at all scales, showing a power-law dis-
tribution of sizes �2�. This view contrasts with the well-
known characteristic lengths shown by most genomic
elements �genes, exons, introns, transposable elements or
TEs, etc.�, being also particularly incompatible with the view
of the genome as a mosaic of long homogeneous segments or
“isochores” �3,4�. The strong controversy generated by these
conflicting views has challenged the existence of either the
correlations themselves �5–8� or the isochore genome struc-
ture �9�. By developing a method able to disclose the differ-
ent scales potentially built into the genome, we show here
that DNA correlations are much more complex than power-
laws with a single scaling exponent: actually the exponents
of such “power laws” are different for different scales, thus
not existing a clear scaling at all. The deviations from uni-
form power laws are known to imply heterogeneities of sev-
eral characteristic sizes �10�, or �less likely in DNA� the
existence of segments with different type of correlations
�12�. We find two characteristic scales in human chromo-
somes: one corresponding to the size of isochores and the
other to the small and medium scale genome elements.

To detect long-range correlations in DNA we use DFA, a
scaling analysis method that can deal with seemingly nonsta-
tionary time series �11,12�, and which provides a simple
quantitative parameter—the scaling exponent �—to repre-
sent the correlation properties of a signal �see Ref. �11� for
details�. DFA provides a relationship between the root mean
square fluctuation F�l� and the window size l. True scaling
appears when

F�l� � l�. �1�

Thus, � can be obtained by fitting F�l� vs l to a straight line
in a log-log plot, the slope being �. If �=0.5, there is no
correlation and the signal behaves as a random series �white
noise�, ��0.5 indicates anticorrelations, and ��0.5 posi-
tive correlations.

Usually, one gets a good correlation coefficient in the fit-
ting since F�l� can be very smooth �13�. However, this pro-
cedure can mask information present in the signal. In Fig. 1
we show an example of how F�l� seems to scale properly as
in Eq. �1� for both a real scale-free fractal sequence and a

large contig human sequence which shows clearly nonfractal
behavior. Thus, to better discriminate between both types of
signals, following the work by Viswanathan et al. �10� we
propose to obtain � not as the slope of a linear fitting of
log10 F�l� vs log10 l but as

��l� =
d log10�F�l��

d log10�l�
, �2�

where we write explicitly ��l� since � is not necessarily
constant. ��l� is then the local � value at scale l. Indeed,
when � is constant, the signal fluctuates in a similar way at

FIG. 1. �Color online� The fluctuation function F�l� vs l in a
log-log plot obtained for two time series. The solid lines correspond
to linear fits �both with R�0.99�, with scaling exponents �fit 0.90
and 0.76, respectively. The signal shown in ��� was generated us-
ing a standard method to create long-range correlated time series
�14� by imposing that �=0.90, and the DFA recovers correctly this
scaling exponent. However, ��� corresponds to a large human DNA
sequence from chromosome �chr.� IV mapped into a binary se-
quence using the SW �strong-weak� mapping rule: C or G→1, A or
T→0. In the inset we represent ��l� obtained using Eq. �2� for the
two cases. The signal with real scaling presents a practically con-
stant value of ��l� with small fluctuations around the linear fitting
value—�fit=0.90 �dotted line�. However, in human DNA ���, ��l�
is far from being a constant value: the fluctuations around the value
obtained in the linear fitting ��fit=0.76, dotted line� are not only
very large but also following a particular pattern, indicating that this
�fit value is meaningless, and that there is no real scaling in spite of
the good linear fitting.
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all scales, indicating self-similarity characterized by the
single value of �—��� in Fig. 1. However, � could change
as a function of l, and one could not say that the signal
presents scaling since F�l� is not a power-law—as the human
case shown in ��� in Fig. 1.

The variation of ��l� reveals useful to analyze the struc-
ture at different scales �10�. First, as shown above, ��l� is
able to discriminate between apparently fractal long-range
correlated signals, helping to distinguish real scaling behav-
ior from nonfractal signals. And second, when the signal
does not present real scaling, the behavior of ��l� is a pow-
erful tool to detect crossovers between different regimes
when changing the scale l at which the signal is studied: the
pattern shown by ��l� indicates the characteristic scales
present in the signal. Thus, the signal corresponding to hu-
man chromosome IV with the SW mapping rule �inset of Fig.
1� used from now on, exhibits clearly nonfractal behavior
and suggests the presence of two main characteristic scales
�the two major peaks in ��l�� at intermediate and large l
values. Similarly, a genome-wide analysis of the behavior of
��l� �Fig. 2� can help to elucidate whether the human ge-
nome presents good scaling properties and therefore fractal
behavior �as widely thought�, or, in contrast, if it has charac-
teristic scales. Two main conclusions can be drawn: �i� hu-
man DNA cannot be considered in general as a fractal signal
with a single type of scale invariance, since ��l� is neither a
constant nor consists of small fluctuations around a constant,
and therefore there are no good scaling properties of the type
�1� and �ii� this pattern is shared by most of the chromo-
somes, thus reflecting the same characteristic scales in the
whole genome. The structure of long-range correlations in

the human genome has been studied previously �7� by using
mainly Fourier analysis, finding crossovers at different scales
which are consistent with our results presented here.

Figure 3 shows the “universal” profile of ��l� obtained by
averaging the 24 curves shown in Fig. 2. At small scales
�log10 l�1.5, l�30 bp�, human DNA behaves practically as
a random sequence—��l��0.5, indicating that there is no
patterns of such small scales in the genome, and therefore no
patchiness is detected in this range. Afterwards, ��l� starts to
increase up to reach a maximum value of about �=0.8 at
log10 l�2.8, l�630 bp, after which ��l� starts to decrease
�except in chrs. 19 and 22�. This behavior indicates patchi-
ness at these intermediate scales, probably due to the pres-
ence of genomic entities of the appropriate size �see below�.
The slow decrease of ��l� after the maximum continues up to
a scale of about log10 l�4.5, l�30 kb, where a local mini-
mum is found. This decrease indicates that the patches of
intermediate scales are disappearing and the sequence
looks more random, the extreme case being chr. 21, where
��l��0.6 at log10 l�5. Beyond log10 l�4.5, ��l� increases
noticeably again when increasing l, revealing the existence
of large scale patchiness or heterogeneities �for which
log10 l�6� present in all the chromosomes. To our knowl-
edge, these large-scale heterogeneities appearing with ubiq-
uity throughout the genome can very likely �15,16� be due to
the isochore structure, indicating the posibility of in silico
isochore detection using ��l�. Noteworthy, the possibility of
a statistically rigorous detection of isochores, and even the
proper isochore concept, has been recently questioned �see
Cohen et al. in Ref. �9�.� Nevertheless, isochores appears
naturally via the properties of ��l�.

Some chromosomes do not follow strictly this general
picture: after reaching the local maximum at intermediate
scales �for log10 l�3�, ��l� does not decrease clearly, but
remains in a kind of plateau for about two orders of magni-
tude �chrs. 15, 16, 17, 19� or even continues increasing �chr.
22� prior to the final large-scale peak. Given the constancy of
� along two orders of magnitude, these chromosomes are
more fractal and scale-invariant than the others �5�.

FIG. 2. �Color online� The function ��l� vs the scale l �Eq. �2��
for the 24 human chromosome sequences from the National Center
for Biotechnology Information �NCBI� build 35 human genome as-
sembly. In every chromosome, we considered all the possible
contigs of N=11 Mb, and calculated ��l� in each one of them,
reaching a maximum scale lmax in the DFA procedure of
lmax=N /10=1.1 Mb �except in chromosome Y, where we consid-
ered a smaller lmax since no contigs of N=11 Mb exist�. Finally, we
averaged all the ��l� values obtained from the individual contigs to
obtain the corresponding ��l� function for the chromosome.

FIG. 3. �Color online� Behavior of ��l� obtained by a weighted
average of the 24 chromosomes shown in Fig. 2 using as weights
the relative length of each chromosome ���, and also obtained from
simulations using a two-scales model �see text for details� shown in
���. Inset: the same for chromosome 21.
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Figure 4 shows the probability distributions of the sizes of
different genomic elements, which allow us to elucidate the
origin of the intermediate and the large scale patchiness. All
the distributions are essentially of log-normal nature, being
quite symmetric around a large central peak. We consider
that exons, introns and transposable elements �TEs�, as well
as other genomic entities of similar scale, are the source of
heterogeneities in the intermediate scale �in the range
102–104�, which coincide �see Fig. 2� with the first wide
peak in the profile of ��l�. In Ref. �6�, the influence in the
correlations of interspersed repeats is studied, finding that
they affect mainly short-range correlations, in agreement
with the behavior of TEs we report here.

In addition, the second peak at large scale coincides with
the scales corresponding to the isochore structure, as re-
vealed by the isochore size distribution, since no other ge-
nomic entity can produce heterogeneities of such a large
scale. The isochore peak is well apart from the intermediate-
scale elements, thus explaining the general decrease of ��l�
in the range 103–104 bp �see Fig. 3�: this is the range of the
left tail of the isochore distribution and the right tail of the
intermediate scale elements. In the case of the chromosomes
15, 16, 17, 19, and 22 referred above, their isochores are
smaller on average �247.2±9.0 kb� than in the remaining
chromosomes �368.0±6.3 kb�, thus explaining why ��l�
does not decrease as in the other chromosomes.

Therefore, we propose that the two clear characteristic
scales �intermediate and large� observed in human DNA
�Fig. 2� come from two different sources: �i� in the interme-
diate case, the patchiness and correlations come from the
alternation of several genomic elements �exons, introns, TEs,
etc.�. Note that only one of these elements cannot justify the
first wide peak in ��l�, and is the combined effect of all of
them the reason for the wide peak and the relatively high �
value in the interval 102� l�104. For example, introns can
account for high � values for l�103 �see Fig. 2�, but cannot
explain these high � values for smaller sizes. �ii� In the large

scale case, the peak observed in ��l� can only be produced
by large patches or heterogeneities, which can be identified
with the isochores. Quantitatively speaking, the isochore-
type segments identified by IsoFinder agrees well with the
large-scale peak appearing in all the human chromosomes.

To show that our proposal for the source of the two char-
acteristic scales works, we performed systematic sequence-
shuffling experiments. Several conclusions can be drawn
from the results, �shown in Fig. 5 only for chr. 21 for sim-
plicity�: �i� when the isochores are internally shuffled, the
small scale properties disappear, and the ��l� profile remains
flat with a constant value of 0.5, as expected in a random
sequence without structure. This is also important because as
the large scale is practically unaffected by this shuffling and
the large scale structure considered comes from the isochores
provided by IsoFinder, we can also conclude that the large
scale properties observed in the ��l� profile are unambigu-
ously due to the isochores. �ii� The heterogeneities at inter-
mediate scale consists mainly of TEs, introns and exons,
since when the isochores are shuffled except these three
types of structures, the ��l� profile is almost identical to the
profile without shuffling. �iii� The major contribution to the
��l� profile comes from the TEs, while a minor contribution
is due to introns and �even less� to exons.

Finally, to show that the structure of ��l� for the human
chromosomes is mainly produced by this two-scale picture,
we propose a simple procedure to generate artificial two-
scale DNA sequences. As the sizes of genomic elements re-
sponsible for the patchiness observed at different scales seem
to be distributed in a log-normal fashion �Fig. 4�, we design
a two-step generation procedure in which the characteristic
scales are introduced also in this way. The two steps gener-
ate, respectively, the large and small scale of the sequence:
�i� We produce segments lengths �li� following a log-normal
distribution generating the numbers �log10 li� from a normal
distribution with mean �large and standard deviation �large
and assign to any segment a random composition xi �fraction
of 1’s� picked alternatively from two Gaussian distributions:
one of mean �odd �for i odd� and the other one with mean
�even �for i even�, both with the same standard deviation �all.
We finish this step when the sum of the segment sizes
reaches a desired size N, 	ili=N, thus having generated the
structure of the signal at large scale. �ii� We proceed simi-

FIG. 4. �Color online� The probability distribution of the loga-
rithms of the sizes of several genomic entities. The sizes of exons
and introns are obtained from annotated genes with perfect align-
ment with the coding sequences �CDS� of their corresponding mes-
senger RNA �mRNA� sequences from the RefSeq database �17�.
The lengths of TEs were obtained using RepeatMasker �18�. The
isochore sizes comes from the algorithm IsoFinder �4� for segments
with l�20000 bp.

FIG. 5. Behavior of ��l� in different sequence-shuffling experi-
ments carried out in human chromosome 21.
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larly, but now working within any of the segments of size li
and composition xi generated in the first step. Now, we pro-
duce subsegment lengths �lij� log-normally distributed by
generating the numbers �log10 lij� from a normal distribution
with mean �small��large and standard deviation �small to
cover the ith segment and finish when 	 jlij = li. Now, we
generate each subsegment ij of size lij with a composition xij
�1’s with probability xij and 0’s with 1−xij� fluctuating
around xi, the composition of the subjacent large scale seg-
ment. We choose randomly xij alternating between even and
odd subsegments in the following way: xij =xi+ �−1� ja+c,
where c is a Gaussian random number with 0 mean and �c
standard deviation, and a is a fixed number establishing the
average difference in composition between even and odd
subsegments: 2a. We repeat a similar procedure in any of the
large scale segments. To use the model, we calculated the
parameters of the two scales for the human DNA case: for
the isochores scale, we used the ISOFINDER results, from
where �large=4.96, �large=0.6, �odd=45.68%, �even
=41.33%, and �all=1.91%. For the small scale, for simplic-
ity we consider only a single type of heterogeneity �TEs, the
one with major contribution� for which �small=2.3, �small
=0.33, a=0 and �c=5.6%. The results of simulations pro-
duced with this model are shown in Fig. 3 for the whole
genome and for chromosome 21, and compared to the corre-

sponding real sequences. Note the good agreement of ��l�
for the real sequences and the simulations, especially in the
case of chromosome 21, where TEs are more dominant than
in the rest of the genome, and therefore closer to the condi-
tions imposed to the model.

We are aware that real DNA is not as simple as the model
proposed here, which is probably the simplest way to pre-
serve not only long-range correlations �since ��0.5 at most
of the scales� but also the existence of characteristic scales.
We simply want to show that the real DNA organization can
appear following similar mechanisms. Roughly speaking,
any characteristic scale introduced in a log-normal way leads
to a peak in the ��l� curve, and conversely: when a
Gaussian-like peak is observed in the ��l� profile, it indicates
the presence of a log-normal �or similar� distribution of
patches centered at �or close to� the l value of the peak.
Finally, we want to point out that our results make compat-
ible the two opposite views described in the Introduction—
the existence of isochores and the presence of long-range
correlations and segments of many scales: both are present in
the human genome structure.
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